

www.ijpdt.com

e ISSN - 2248 - 910X

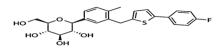
Print ISSN - 2248 - 9096

ANALYTICAL METHODS FOR ESTIMATION OF CANAGLIFLOZIN IN PHARMACEUTICAL DOSAGE FORM - A REVIEW

Dr.K.Kaveri*, J.Mageswaran, B.Manivannan, N.Logeshwari, S.Mageshwaran, T.Mahalakshmi.

¹Department of Pharmaceutical Analysis, Aadhibhagawan College of Pharmacy, Rantham, Thiruvannmalai District, Tamilnadu -604407

ABSTRACT


Canagliflozin is an orally well-administered drug. It is under the type of sodium-glucose co-transporter - 2 (SGLT-2) inhibitor used in the treatment of type-II diabetes patient. By inhibiting the transporter protein SGLT-2 in the kidneys, canagliflozin reduces renal glucose reabsorption, thereby increasing urinary glucose excretion and reducing blood glucose levels. Canagliflozin is estimated by RP-HPLC, RP-LC, UV-Spectrophotometer, UPLC, HPTLC, LC-MS, FT-IR methods, spectoflurimetry. There are plenty of articles which have already been published describing analytical method and method validation for the same. In present to review account, the disclosed analytical methods are outlined for the establishment of canagliflozin in its Pharmaceutical preparations and biological matrices. Most frequently used techniques such as spectrometric and liquid chromatography method for canagliflozin alone and in combination include parameters like λ max, solvent, matrix etc. and HPLC method for canagliflozin alone and in combination including parameters like stationary phase, mobile phase, composition, detection, wavelength etc. HPTLC methods including parameters like stationary phase, mobile phase combination, RF etc. This review also provides detailed information on separation condition for canagliflozin alone, in the presence combination with other drugs and in presence of its degradation products.

Keywords: Canagliflozin, Analytical methods and Validation Technique, HPLC, RP-LC, HPTLC, LC-MS, UPLC, UV-Spectroscopy, Fourier-transform Infra-red spectroscopy, Spectroflurimetry, Review article.

INTRODUCTION DRUG PROFILE

Canagliflozin [C24H25FO5S] is a white to off white solid with melting range of 95-105°C is chemically named as (2S,3R,4R,5S,6R)-2-{3-[5-[4-Fluoro-phenyl)thiophen-2-ylmethyl]-4-methyl-phenyl}-6-hydroxymethyltetrahydro-pyran-3,4,5-triol. It is soluble in many organic solvents (methanol, dimethyl sulfoxide) but insoluble in aqueous media. Canagliflozin is an oral anti-diabetic agent which belongs to a newly developed class. It is an inhibitory action on sodium-glucose co-transporter-2 (SGLT-2).

Structure of CANAGLIFOZIN

Mechanism of Action

The sodium-glucose co-transporter-2 (SGLT-2), is found in the proximal tubules of the kidney, and reabsorption filtered glucose from the renal tubular lumen. Canagliflozin Inhibits the SGLT-2 co-transporter. This inhibition leads to lower reabsorption of filtered glucose into the body and decreases the renal threshold for glucose [RTG], leading to increased glucose, excreted in the urine.

ANALYTICAL DETERMINATION:

1. High Performance Liquid Chromatography (HPLC):

HPLC is the advanced analytical technique in the pharmaceutical analysis, which is predominantly used in pharmaceutical industries [7-8] for the large variety of samples. It is the method of choice for determining the purity of new drug candidates, monitoring changes or scale-ups of synthetic procedures, evaluating new formulations, and scrutinizing quality control of final drug products.

S. NO	STATIONARY PHASE	MOBILE PHASE	FLOW RATE AND METHOD OF DETECTION	RESULTS	REFERENCE
1.	C18 column F 250 mm length \times 4.6 mm diameter \times 5 μ m particle size	Acetonitrile : 1- octane sulphonic acid in ratio of 70:30 v/v	1.0ml/min UV at 245nm	r : 0.9997 LOD : 0.0170 μg/ml LOQ : 0.1705 μg/ml	Sreenivasulu.S et al.[10]
2.	C18 column (250 mm × 4.6 mm × 5 mm particle size)	Phosphate buffer : Acetonitrile (60:40 v/v)	PDA Detector 290 nm	Rt : metformin:5.4 min Canagliflozin: 7.6 min r : 0.999	Darshan Patel et al.[11]
3.	Non polar inertial ODS $-3(250 \text{ mm} \times 4.6 \text{ mm}, 5 \mu)$	Ammonium acetate : Buffer (pH – 4.5) Acetonitrile in the ratio of 30:70 % v/v	1 mL/min UV at 252 nm	Rt : 4.5 mins Run time : 7 min LOD : 0.01 ppm LOQ : 0.04 ppm	Darshan Bhatt <i>et al.</i> [12]
4.	INERTSIL Column C18 (150 × 4.6) 5 μm	water :Acetonitrile (70:30)v/v	1 mL/min UV at 264	r : 0.999 LOD : 0.003 µg/ml LOQ : 0.011 µg/ml	Swapnasingh <i>et</i> <i>al.</i> [13]
5.	Cosmosil C18 (250 mm × 4.6 ID particle size : 5 micron)	Water: Methanol 50:50 at pH-3	1 ml/min UV at 254 nm Run time : 8 min	Canagliflozin:- LOD : 0.57 µg/ml LOQ : 1.70 µg/ml Metformin : - LOD : 0.16 µg/ml LOQ : 0.49 µg/ml	SunandaLekur wala <i>et al</i> .[14]
6.	K romasil C18 250 × 4.6 mm , 5μm, 120 A°	Acetonitrile : 0.1% solution of Phosphoric Acid (50 : 50)	1.5 ml/ min UV at 290 nm	LOD : 0.22 ppm LOQ : 0.70 ppm	Mohammad Tarikul Islam Boussunia <i>et</i> <i>al.</i> [15]
7.	K romasil C18 column [250 × 4.6 mm ; 5 mm particle size]	Mixture of 0.001 M Ammonium acetate pH adjusted to 3.5 with Ortho Phosphoric Acid Acetonitrile (65:35, v/v)	PDA Detector	Metformin LOD : 0.27µg/ml LOQ : 0.83 µg/ml Canagliflozin LOD : 0.01 µg/ml LOQ : 0.04 µg/ml	Uttampanigrap hy <i>et al.</i> [16]
8.	Stainless steel column RP Amide 150 mm × 4.6 mm; 2.7 µm	Ammonium acetate buffer : Acetonitrile	0.7 ml/min Injection volume : 10 µL UV Detector : 290 nm	LOD : 0.005 LOQ : 0.015	GoutamSen et.al.[17]
9.	ODS 250mm × 4.6 mm ; 5μ particle size	Isocratic mobile phase Acetonitrile and Methanol	Rt: For Metformin- 2.7832 min Canagliflozin- 3.781 PDA Detector : 212 nm	LOD : 0.034 LOQ : 0.102	NareddyPreethi Reddy <i>et</i> <i>al</i> .[18]
10.	C18 250 mm × 4.6 mm; 5µ particle size	Acetonitrile and Orthophosphoric acid	1 ml/ min PDA Detector at 290 nm	Injection volume: 20 LOD : 0.41 ml LOQ : 1.24 µg/ ml	Ishpreetkaur et al.[19]
11.	C18 100mm × 4.6 mm	Ammonium	1-10 mg/ml	LOD : 0.0026 ng/ml	AsmitaV.Gaik

	× 3.5 µm	formate in water : Methanol (25:75 v/v)	UV at 290 nm	LOQ : 0.008 ng/ml	wad, Preetikhulbe <i>et</i> <i>al.</i> [20]
12.	INERTSIL ODS – 3 (250 × 4.6 mm, 5 μ)	0.02% Formic acid and Acetonitrile (40:60) 0.02% Formic acid and Acetonitrile (40:60)	1.2 ml/min UV at 230 nm	Run time : 4.4 min Injection volume:10-50 g/ml LOD : 0.00736µg/ml LOQ : 0.00414µg/	Dr.Vijaya Lakshmi Marella <i>et al</i> . [21]
13	C18 250 mm ×4.6 mm, 5 µm particle size	Acetonitrile 0.1% and Sodium acetate buffer pH 4.6, ratio of 20:80 in Isocratic mode	1 ml/min UV at 291 nm	Injection volume :2-14 µg/ml	GudipallyMou nika <i>et al.</i> [22]
14.	K romasil C18 column [250 mm× 4.6 mm ×5 µm particle size]	0.1% OPA (pH : 2.8) and Acetonitrile (45:55 v/v)	1 ml/min UV Detector at 254nm	Metformin LOD : 0.17 ug/ml LOQ : 2.20 ug/ml Canagliflozin LOD : 0.01 ug/ml LOQ : 0.50 ug/ml	K.P.R Chowdhury <i>et</i> <i>al.</i> [23]

*LOD – Limit of Detection, LOQ – Limit of Quantitation.

2. LC-MS method for Canagliflozin

S.NO	STATIONARY PHASE	MOBILE PHASE	FLOW RATE AND METHOD OF DETECTION	RESULTS	REFERENCE
1.	C18 Analytical column (50mmx4.6mm)	0.1% Formic acid and Acetonitrile (60:40 v/v)	Run time : 5 minutes	LLOQ : Metformin : 47.24 ng/ml <u>Canagliflozin : 11.31</u> <u>ng/ml</u>	Ola Zakaria <i>et al.</i> [24]
2.	INERTSIL ODS 5 μm C18 50 × 4.60 mm	30:70 v/v of 0.01 M Ammonium acetate and Methanol as an Isocratic mobile phase	0.8 ml/min	LOD : 1.38 LOQ : 4.17	DharsanBhatt <i>et al</i> . [25]
3.	Hypersil BDS, C18 column (100×4.6mm; 5µm)	Isocratic mobile phase 5mm Ammonium acetate with 0.1% Formic acid and Methanol (15:85 v/v)	$\begin{array}{c} 1.0 \text{ ml/min} \\ \text{Injection volume :} \\ 15 \ \mu\text{L} \\ \text{Linearity :} \\ \text{Canagliflozin :} \\ 10.00\text{-}6028.00 \\ \text{Metformin : } 10.00 \\ - 3027.00 \end{array}$	LOQ : Canagliflozin : 10.27 ng/mL Metformin : 10.03 ng/mL	Lakshmana Rao Atmakuri <i>et al</i> . [26]
4.	COS-MICSIL 100 C18 [250×4.6 mm] 5μm column	Acetonitrile: water (70:30 v/v) Detection : 282 nm PH : 3.0±0.05	1 ml/min Run time : 6 minutes Injection volume : 20L UV Detection:282nm	LOD : 0.28 g/ml LOQ : 0.78 g/ml	Dr.SatheeshaBabu B.K <i>et al</i> . [27]

*LOD – Limit of Detection, LOQ – Limit of Quantitation, LLOQ – Lower Limit of Quantitation.

3. <u>**RP-LC METHOD FOR CANAGLIFLOZIN**</u>

S.NO			FLOW RATE AND	RESULTS	REFERENCE
	STATIONARY PHASE	MOBILE	METHOD OF		
		PHASE	DETECTION		
1.	phenomenixgemini-NX	Acetonitrile:1-	1 ml/min	LOD : 0.0170 g/m	M.Rameswara Rao
	C18 column	octane	Concentration range : 10-	LOQ: 0.1705 g/ml	<i>et al.</i> [28]
	[250×4.6mm, 5 m	sulphonic acid	100 g/ml		
	particle size]	Detection: 245	Run time : 10 minutes		
		nm	UV Detection:245nm		
		Ratio : 70:30			
		v/v			

*LOD – Limit of Detection, LOQ – Limit of Quantitation

4. UPLC METHOD FOR CANAGLIFLOZIN

S. NO	SAMPLE	DESCRIPTION	DETECTION	REFERENCE
1.	Oral Solid dosage form	Column: BEH C18 Column 50x2.1mm,1.7 µm column Mobile phase: Methanol : Acetonitrile Flow rate – 0.3ml/min LLOQ-0.100ng/ml	PDA DETECTOR	VijayakumarRekulapally <i>et al.</i> [29]

*PDA – Photodiode-Array Detection, LLOQ – Lower Limit of Quantitation.

5. HPTLC METHOD FOR CANAGLIFLOZIN

S. NO	DERIVATIZATION AGENT	STATINORY PHASE MOBILE PHASE DETECTION METHOD	Retention factor (R _f) LOD	REFERENCE
1.	CAMAG TLC IV scanner	Precoated Silica gel 60 F254 HPTLC aluminium plates (20x10 cm,0.2mm thick) Mobile phase: Toluene: Ethyl acetate :Methanol (2:2:1) Saturation time: 30min.	LOD : 0.39 LOQ : 1.19	Ishpreet Kaur et al. [30]

*LOD – Limit of Detection, LOQ – Limit of Quantitation.

6. UV SPECTROSCOPY METHOD FOR CANAGLIFLOZIN

S.NO	SOLVENT	FLOW RATE AND METHOD OF DETECTION	RESULT	REFEERENCE
1.	Methanol: Distilled	UV at 224 nm	LOD:0.33µg/ml.	K.Saravanakumari et al. [31]
	water(1:1)	Linearity:10.66µg	LOQ:1.00µg/ml	
2.	Methanol	UV Visible	For metformin	D.Sharmila et al. [32]
		Spectrophotometer.	LOD:0.49µg/ml	
			LOQ1.49µg/ml	
			For canagliflozin	
			LOD:0.43µg/ml	
			LOQ:1.31µg/ml	
3.	Methanol and Water	UV at 290 nm	L0D:0.084 mcg/ml	Ishpreet Kaur et al. [33]
			LOQ:0.255 mcg/ml	
4.	Methanol and	UV at 319 nm	For canagliflozin	B.A.Patel <i>et al.</i> [34]
	Water(40:60)		LOD:0.3325µg/ml	
			LOQ:1.0076µg/ml	
			For metformin	
			LOD:0.10431µg/ml	
			LOQ:0.3161µg/ml	

*LOD – Limit of Detection, LOQ – Limit of Quantitation.

different pharmaceutical dosage forms. So, RP-HPLC is the

analytical development methods for estimation of

canagliflozin in pharmaceutical dosage form. The proposed

technique accomplished for canagliflozin are RP-HPLC, RP-LC, HPTLC, LC-MS, UPLC, UV- SPECTROSCOPY,

FT-IR, Spectrofluorimetry. This above data are helpful for

further research studies in analysis of canagliflozin.

In this review article, we discussed about the

most preferable method.

CONCLUSION

7. FT-IR METHOD FOR CANAGLIFLOZIN

S.NO	PARAMETER	RESULTS	REFERENCE
1.	Group: O-H	Correlation coefficient, r ² :0.999	Nareshbabuchilamakuru
	Wavelength (cm^{-1}) : 3000-3500	LOD:0.159677µg	<i>et al.</i> [35]
	Beer's law range (µg/mg) : 3-11	LOQ:0.483871µg	

*LOD – Limit of Detection, LOQ – Limit of Quantitation.

8. SPECTROFLURIMETRIC METHOD FOR CANAGLIFLOZIN

S. NO	SOLVENT	DETECTION	RESULTS	REFERENCE
1	Methanol	UV Detection	R ² -0.9994	Tailor Pratik et al.
		Excitation $-\lambda$ max 293 nm	LOD - 13.58ng/mL	[36]
		Emission – λ max 349 nm	LOQ – 41.15ng/mL	

*LOD – Limit of Detection, LOQ – Limit of Quantitation.

DISCUSSION AND REPORT:

In this above review article, we had investigated the analytical development methods of canagliflozin in different pharmaceutical dosage form. Canagliflozin is the drug used for the treatment of type II diabetes patients and is available in limited Pharmaceutical dosage form (i.e. tablet).

As stated in different article, we came to a conclusion that the chromatographic technique RP-HPLC along with the UV - V is be spectroscopy has produced efficient results in the analytical development method of canagliflozin in

REFERENCES:

- 1. Rameshwar S. Cheke, Rohan R. Narkhede, Sachin D. sginde, Dr.Vaibav S. Adhao, Instrumental Method Of Analysis, Pee Vee publication.
- 2. Dr. S. Ravi Sankar, The text book of pharmaceutical Analysis, 5th Edition, Rx Publication West Car Street, Tirunelveli, 627006, India, 5:267 A/3.
- 3. Website:https://en.wikipedia.org/wiki/Analytical_technique
- 4. Website:https://www.pharmagudieline.com/2018/09/steps-for-analytical-method-development.html
- 5. Website:https://go.drugbank.com.
- 6. Website:https://pubmed.ncbi.nim.nih.gov
- 7. Websie:https://www.rxlist.com.
- 8. Website:https://www.webmd.com.
- 9. Website:https://www.drugs.com.
- 10. Srinivasulu S *et al.* A validated stability indicating RP-HPLC method for the quantification of canagliflozin. International Journal of Research in Pharmaceutical Sciences, Int.J.Res.pharm.Sci. 9(1),206-215.
- 11. Darshak Patel *et al.* A Stability Indicating RP-HPLC Method Validation for Simultaneous estimation of Metformin HCL and Canagliflozin in Pharmaceutical Dosage Form. Journal of Pharmaceutical Research International 33(56A): 180-192, 2021; Article no.JPRI.79100 ISSN: 2456-9119.
- 12. Darshan Bhatt *et al.* Analytical Method Development and Validation for the Estimation of Canagliflozin in Bulk and Formulation by RP-HPLC. International Journal of Pharmaceutical Sciences and Drug Research 2018; 10(3): 139-143.
- 13. Swapna Singh *et al.* Method Development and Validation of Canagliflozin by Using RP-HPLC in Pure and Tablet Dosage Form. Research Journal of Pharmaceutical Dosage Form and Technology. 13(3): July September, 2021.
- 14. SunandaLekurwale *et al.* RP HPLC Method development and validation for simultaneous estimation of anti-diabetic drug canagliflozin and metformin in bulk and dosage form. World Journal of Pharmaceutical and Life Sciences *wjpls*, 2021, vol. 7, *Issue 11*, 144-150. www.wjpls.org
- 15. Mohammad Tarikul Islam Boussunia *et al.* Quality-By-Design Approach to Stability Indicating RP-HPLC Analytical Method Development for Estimation of Canagliflozin API and its Validation. Pharm Methods, 2017: 8(2): 92-101. www.Journalonweb:com/phm
- 16. Uttam Prasad panigrahy *et al.* A Novel Validation RP-HPLC-DAD Methods for the Simultaneous Estimation of metformin Hydrochloride and Canagliglozin in Bulk and Pharmaceutical tablet dosage form with forced degradation studies. Oriental journal of chemistry an international open free access, peer reviewed research journal, ISSN: 0970-020 X CODEN: OJCEHEG 2015, vol.31, No.(3). www.orientjchem.org

- 17. GoutamSen *et al.* Validation of Stability-Indicaitng Reverse phase HPLC Method for the Determination of Related Substance in Canagliflozin Drug Substance. IOSR Journal of Pharmacy and Biological Science (IOSR-JPBS) *e-ISSN:2278-3008, P-ISSN:2319-7676. Volume 12, Issue 6 Ver. V (Nov. Dec. 2017), PP 86-94 www.iosrjournals.org*
- NareddyPreethi Reddy *et al.* RP-HPLC Method development and validation for the Simultaneous Estimation of Metformin and Canagliflozin in Tablet Dosage Form. International Journal on Pharma Sciences Vol. 5, No. 4 (2015): 1155-1159 ISSN: 2320-6810
- 19. Ishpreetkaur *et al.* Development and validation of a stability-indicating reverse phase HPLC-PDA method for determination of Canagliflozin in Bulk and pharmaceutical dosage form. Pharm methods, 2016; 7(1):54-62 www.phmethods.net, www.journalonweb/phm.
- 20. Asmita V *et al.* A High Performance Liquid Chromatography Method Development and Validation for the Estimation of Canagliflozin in Bulk and Marketed Dosage Form. Asian Journal of Pharmaceutics Oct Dec 2021 15 (4) | 469
- Vijaya Lakshmi Marella *et al.* A novel validated RP-HPLC method for the estimation of canagliflozin in bulk and pharmaceutical dosage forms. International journal of advances pharmaceutical analysis ISSN :2277-9353(online) journal DOI: https://doi.org/10.7439/ijapa
- 22. GudipallyMounika *et al.* Research Article on Development and Validation of RP-HPLC Method for Estimation of Canagliflozin.DOI: 10.18090/samriddhi.v11 i02.2 S-JPSET : vol. 11,Issue 2, ISSN :2229-7111 (Print) and ISSN :2454-5767 (online)
- 23. K.P.R Chowdhury *et al.* DEVELOPMENT OF A NEW STABILITY INDICATING RP-HPLC METHOD SIMULTANEOUS ESTIMATION OF METFORMIN HYDROCHLORIDE AND CANAGLIFLOZIN AND ITS VALIDATION AS PER ICH GUIDELINES. International Journal of Pharmaceutical Sciences and Research Kommineni *et al.*, IJPSR, 2017; vol. 8(8): 3427-3435. E-ISSN: 0975-8232; P-ISSN: 2320-5148.
- 24. Ola Zakaria etal. Novel LC-MS/MS method for analysis of Metformin and Canagliflozin in human plasma: application to a pharmacokinetic study.mohamed *et al.* BMC Chemistry (2019) 13:82. *https://doi.org/10.1186/s13065-019-0597-4*
- 25. Dharsanbhatt *et al.* A VALIDATED LC-MS/MS METHOD FOR PHARMACOKINETIC STUDY OF CANAGLIFLOZIN IN HEALTHY RABBITS. International Journal of Pharmacy and Pharmaceutical sciences ISSN-0975-1491 Vol 10, Issue 2, 2018.
- 26. Lakshmana Rao Atmakuri *et al.* Simultaneous Determination of Canagliflozin and Metformin in Human Plasma by LC-MS/MS Assay and its Application to a Human Pharmacokinetic Study. DOI:10.5530/ijper.53.3s.107. Indian Journal of Pharmaceutical Education and Research vol: 53 Issue 3 Supp[2] jul-sep, 2019 www.ijper.org.
- 27. SatheeshaBabu B.K *et al.* New Stability Indicating LC Method for Novel Antidiabetic Drug Canagliflozin Hemihydrate Quantification; Development and Validation.Pharmaceutical; Method, vol 10, Issue 2, Jul-Dec, 2019 www.journalonweb.com/phm.
- 28. Rameswara Rao *et al.* A VALIDATION REVERSE PHASE LIQUID CHROMATOGRAPHIC METHOD FOR THE DETERMINATION OF CANAGLIFLOZIN. World Journal of Pharmacy and Pharmaceutical Sciences. ISSN 2278-4357 volume 6, Issue 2, 1119-1132 www.wjpps.com.
- VijayakumarRekulapally *et al.* A NOVEL SIMULTANEOUS STABILITY-INDICATING UPLC ASSAY METHOD FOR METFORMIN HYDROCHLORIDE AND CANAGLIFLOZIN IN ORAL SOLID DOSAGE FORM. International Journal of Advances in Pharmacy and Biotechnology. Volume 4, Issue -1, 2018, 10-22. ISSN: 2454-8375
- 30. Ishpreet Kaur *et al.* Development and Validation of a Stability –Indicating High Performance Thin Layer Chromatography (HPTLC) Method for estimation of Canagliflozin in bulk and Pharmaceutical Dosage Form. Journal of Applied Pharmaceutical Science Vol. 6 (05), pp. 051-057, May, 2016 DOI: 10.7324/JAPS.2016.60508 ISSN 2231-3354. http://www.japsonline.com.
- 31. K.Saravanakumari *et al.* Development and validation of uv spectroscopic method for the estimation of canagliflozin in bulk and tablets. International Journal of Pharmaceutics and Drug Analysis vol: 8, Issue: 2, 2022; 1-4 ISSN: 2348:8948 www.ijpda.com.
- 32. D. Sharmila *et al.* Simultaneous estimation of canagliflozin and metformin hydrochloride in tablet dosage form by UV spectrophotometry. International Journal of Pharmaceutical Chemistry and Analysis, April-June, 2018; 5(2):94-99 DOI: 10.18231/2394-2797.2018.0015 www.ijpda.com.
- 33. IshpreetCaur *et al.* Development and Validation of Stability indicating UV Spectroscopic Method for Determination of Canagliflozin in Bulk and Pharmaceutical Dosage Form. Pharmaceutical Methods, Vol 7, Issue 1, Jan-Jun, 2016 www.phmethods.net, www.journalonweb.com/phm.
- 34. B.A.Patel *et al.* Development and Validation of UV-Spectrophotometric Method for The Estimation of Canagliflozin and Metformin. International Journal of Pharmacy and Biological Sciences-IJPBSTM (2020) 10(1): 65-72 ISSN:2230-7605, Print ISSN:2321-3272 DOI: https://doi.org/10.21276/ijpbs.2020. 10.1.10
- 35. Nareshbabuchilamakuru *et al.* FT-IR METHOD FOR QUANTIFICATION OF CANAGLIFLOZIN IN BULK AND TABLET DOSAGE FORM- A GREEN TACTIC. WORLD JOURNAL OF PHARMACY AND PHARMACEUTICALSCIENCES Volume 8, Issue 7, 1120-1129 ISSN 2279-4357 www.wjpps.com.

36. Tailor Pratik *et al.* Development and validation of spectrofluorimetic method the estimation of canagliflozin in its pharmaceutical dosage form. Pharma science monitor and international Journal of pharmaceutical sciences. ISSN: 0976-7908http://www.pharmasm.com